Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice
نویسنده
چکیده
Micro-computed tomography (μCT) is currently the gold standard for determining trabecular bone microstructure in small animal models. Numerous parameters associated with scanning and evaluation of μCT scans can strongly affect morphologic results obtained from bone samples. However, the effect of these parameters on specific trabecular bone outcomes is not well understood. This study investigated the effect of μCT scanning with nominal voxel sizes between 6-30 μm on trabecular bone outcomes quantified in mouse vertebral body trabecular bone. Additionally, two methods for determining a global segmentation threshold were compared: based on qualitative assessment of 2D images, or based on quantitative assessment of image histograms. It was found that nominal voxel size had a strong effect on several commonly reported trabecular bone parameters, in particular connectivity density, trabecular thickness, and bone tissue mineral density. Additionally, the two segmentation methods provided similar trabecular bone outcomes for scans with small nominal voxel sizes, but considerably different outcomes for scans with larger voxel sizes. The Qualitatively Selected segmentation method more consistently estimated trabecular bone volume fraction (BV/TV) and trabecular thickness across different voxel sizes, but the Histogram segmentation method more consistently estimated trabecular number, trabecular separation, and structure model index. Altogether, these results suggest that high-resolution scans be used whenever possible to provide the most accurate estimation of trabecular bone microstructure, and that the limitations of accurately determining trabecular bone outcomes should be considered when selecting scan parameters and making conclusions about inter-group variance or between-group differences in studies of trabecular bone microstructure in small animals.
منابع مشابه
Micro-computed tomography assessment of human femoral trabecular bone for two disease groups (fragility fracture and coxarthrosis): Age and gender related effects on the microstructure
The aim of this study was to identify three-dimensional microstructural changes of trabecular bone with age and gender, using micro-computed tomography. Human trabecular bone from two disease groups, osteoporosis and osteoarthritis was analyzed. A prior analysis of the effects of some procedure variables on the micro-CT results was performed. Preliminary micro-CT scans were performed with three...
متن کاملGuidelines for assessment of bone microstructure in rodents using micro-computed tomography.
Use of high-resolution micro-computed tomography (microCT) imaging to assess trabecular and cortical bone morphology has grown immensely. There are several commercially available microCT systems, each with different approaches to image acquisition, evaluation, and reporting of outcomes. This lack of consistency makes it difficult to interpret reported results and to compare findings across diff...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کامل3D Image Registration Is Critical to Ensure Accurate Detection of Longitudinal Changes in Bone Microstructure and Mineral Density Measurements in Rats by In Vivo Micro Computed Tomography
Introduction In the recent decade, in vivo micro computed tomography (μCT) scanners have become available to monitor longitudinal bone changes in rodents. With an isotropic image voxel size up to 10.5 μm, changes in geometry and microstructural properties of rodent bone in response to either disease or treatment can be visualized and quantified over time. In order to detect longitudinal changes...
متن کاملThe effect of docosahexaenoic acid on bone microstructure in young mice and bone fracture in neonates.
BACKGROUND As low bone mineral density is a risk factor for fracture in childhood, optimizing age appropriate bone mass is recommended and might lower the impact of bone loss related to age. Consumption of omega-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic and docosahexaenoic (DHA) acids have been shown to beneficially modulate bone metabolism. The objective of this study w...
متن کامل